
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
79

3 
13

0
A

1
*EP003793130A1*

(11) EP 3 793 130 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
17.03.2021 Bulletin 2021/11

(21) Application number: 19197425.2

(22) Date of filing: 14.09.2019

(51) Int Cl.:
H04L 9/32 (2006.01) H04L 9/08 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(27) Previously filed application: 
09.10.2018 EP 18199471

(71) Applicant: Ethernity Hodl UG
83671 Benediktbeuern Bayern (DE)

(72) Inventors:  
• The inventor has waived his right to be thus 

mentioned.

(54) SECURE DECENTRALIZED CLOUD COMPUTING WITH PRIVACY CONTROLS

(57) It is an object of the invention to provide a de-
centralized cloud computing system which protects data
privacy while user’s data is being transferred, stored or
processed within the ecosystem. Currently, cloud com-
puting users have to trust their cloud computing provider
in regard to how their private data is handled. Moreover,
usually there is no way to verify technically how the data
was processed without a very complicated process. The
invention leverages distributed ledger technology, com-

monly referred as blockchain technology, to record meta-
data about each cloud computing service request and
each cloud service provider offer. Using cryptographic
methods, the data is protected while in transit and at rest
when is transferred from the user to the service provider.
Using trusted execution environment technology, an en-
clave is used to protect data privacy while it is being proc-
essed by the service provider.



EP 3 793 130 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The disclosed relates to blockchain technology,
security mechanisms, and cloud computing infrastruc-
ture. It is particularly suited for use as a mechanism of
securing software execution in a decentralized cloud in-
frastructure spread across a plurality of computing de-
vices while enforcing the three principles of information
security: confidentiality, integrity, availability

BACKGROUND

[0002] In this document we use the term "blockchain
solution" to refer to a system comprising a distributed
ledger, the software that operates the data on the distrib-
uted ledger, a plurality of devices that share the ledger
information and/or operate the data on the distributed
ledger via operations referred as blockchain transac-
tions.
[0003] In this document we use the term "software pay-
load" to refer to a software process and its related infor-
mation which may comprise the data stored on a com-
puting device storage, the data stored in a computing
device memory, the data that is being transmitted over
a communication network and the data that is being re-
ceived over a communication network.
[0004] In this document we use the term "payload proc-
essor" to refer to an entity that processes software pay-
loads acting as a what is commonly referred as, a cloud
service provider. Hereafter, the term "hypervisor soft-
ware" refers to a computer program, software, or soft-
ware module ran by the payload processor to interact
with the blockchain solution.
[0005] Decentralized cloud computing refers to an in-
formation processing technology that enables users to
execute a software payload without having to provide,
maintain or manipulate, an underlying hardware infra-
structure, regardless of the identity of the payload proc-
essor performing the software execution.
[0006] In contrast to the regular cloud, the software
execution requests are not honored by a specific payload
processor and instead the payload processor is deter-
mined automatically and most likely it is determined by
the blockchain solution based on predefined rules, com-
monly known as a "smart contract".
[0007] Any discussion of documents, acts, materials,
devices, articles or the like which have been included in
the present specification is not to be taken as an admis-
sion that any or all of these matters from part of the prior
art base or where common general knowledge in the field
relevant to the present disclosure as it existed before the
priority date of each claim on this application.
[0008] Throughout this specification the word "com-
prise", or variations such as "comprises" or "comprising",
will be understood to imply the inclusion of a stated ele-
ment, integer or step, or group of elements, integers or

steps, but not the exclusion of any other element, integer
or step, or group of elements, integers or steps.

SUMMARY

[0009] Embodiments of the invention may comprise a
method and corresponding system operating a decen-
tralized cloud infrastructure that safeguard the user’s pri-
vacy and the software payload’s confidentiality, integrity
and availability while is being executed by the payload
processor.
[0010] One embodiment may comprise one or more
blockchain solutions which store users requests for serv-
ice as well as payload processors service offers and their
associated metadata. The user’s requests and payload
processor’s offers are compared and when matches are
found, the software payload may be securely transferred
to the one or more payload processors and executed.
[0011] One or more embodiments may comprise cryp-
tographic methods or other computer-implemented
methods that may enforce the requesting user’s privacy
controls and may also enforce the requested security
controls that safeguard software payload’s confidential-
ity, integrity and availability while a payload processor is
providing the requested services.
[0012] The invention may be described as a security
method/system for securing a software payload integrity
when executed in a decentralized manner. The invention
may be described as a method/system for securing a
software payload confidentiality when executed in a de-
centralized manner.
[0013] The invention may be described as a meth-
od/system for securing a software payload availability
when executed in a decentralized manner. The invention
may be described as a method/system for securing us-
er’s privacy when executing a software payload in a de-
centralized manner.
[0014] Other embodiments of the invention may in-
clude a software component, module, plug-in or exten-
sion for the hypervisor software. Other embodiments of
the invention may include a device running the hypervisor
software and the hypervisor software.

BRIEF DESCRIPTION OF DRAWINGS

[0015]

Fig. 1 Depicts a cloud computing ecosystem accord-
ing to an embodiment of the present invention

Fig. 2 Depicts a cloud computing payload processor
node (hardware) with integrated storage according
to an embodiment of the present invention

Fig. 3 Depicts a cloud computing payload processor
node (hardware) with external storage according to
an embodiment of the present invention

1 2 



EP 3 793 130 A1

3

5

10

15

20

25

30

35

40

45

50

55

Fig. 4 Is a flow diagram of a process being performed
by the user at the blockchain level to maintain soft-
ware payload confidentiality.

Fig. 5 Is a flow diagram of a process being performed
by payload processor at the blockchain level to main-
tain software payload confidentiality.

Fig. 6 Is a flow diagram of a process being performed
to keep software payload integrity when uploading
data.

Fig. 7 Is a flow diagram of a processes being per-
formed for validating software payload integrity.

DETAILED DESCRIPTION

[0016] In the prior art decentralized cloud user’s appli-
cations and data are being transferred to a most likely
unknown payload processor hardware. On the payload
processor hardware, a virtual container or a virtual ma-
chine is being provisioned automatically and the user’s
data is transferred on it and then the software runs ac-
cording to user’s preferences.
[0017] Most of the cloud computing platforms offer en-
cryption possibilities for the virtual storage, however the
locking and unlocking operations are performed locally,
therefore these operations are in control of the payload
processor.
[0018] Due to the decentralized nature of the system,
it is very difficult to control or to restrict the bad actors
operating as payload processors. Anyone can become
a payload processor and make their computing resourc-
es available for exploitable users. These bad actors have
full access to see all the data that is stored on their hard-
ware, including but not limited to: database passwords,
administrative passwords hashes, SSL private keys.
[0019] Moreover, a bad actor operating as a payload
processor can modify user’s data and introduce viruses
or malware as there is no security mechanism in place
preventing them from doing so. In addition to this issue,
the bad actors can act as man in the middle and snoop
on the connections and the network activity of the network
users using common sniffing techniques.
[0020] Taking the above into account, is it possible to
easily understand how dangerous the decentralized
cloud computing is without the right security and privacy
controls in place.
[0021] The present invention has made a view on such
a point and it is a technical object of the invention to pro-
vide a system that makes use of a smart contract design
and a software module design that integrates with most
of the cloud computing platforms. The smart contract and
the software module work together to allow cloud com-
puting users to make use of additional cryptographic keys
associated with their distributed ledger transactions.

MEANS FOR SOLVING THE PROBLEM

[0022] Using the system the users have the possibility
to automatically encrypt and anonymize their data while
in transit. Acting this way, the system ensures confiden-
tiality of the software payload.
[0023] Using the system the users have the possibility
to automatically encrypt their data while at rest and pre-
vent the payload processors from accessing or tampering
their data by remotely controlling the unlocking of the
virtual machine storage at boot time. Acting this way, the
system ensures confidentiality of the software payload.
[0024] Using the system the users have the possibility
to automatically validate file integrity when their software
payload is being transferred and executed. This possible
by allowing cryptographic hashes to be associated with
distributed ledger transactions. Acting this way, the sys-
tem ensures integrity of the software payload.
[0025] Using the system the users have the possibility
to automatically load balance their software payload be-
tween multiple payload processors. This is possible by
associating multiple instances of the same software pay-
load to a distributed ledger transaction. Acting this way,
the system ensures increased availability of the software
payload.

OVERVIEW OF THE SYSTEM

[0026] Fig. 1 illustrates one embodiment which may
comprise a user (17), a primary blockchain solution (1),
multiple payload processors (2, 3, 4) running hypervisor
software and several software payloads (5, 6, 7, 8, 9, 10,
11, 12, 13). This embodiment may comprise additional
blockchain solutions that interact privately with specific
software payloads: blockchains solution (14) interacts
with software payloads (5, 8, 11); blockchains solution
(15) interacts with software payloads (6, 9, 12); block-
chains solution (16) interacts with software payloads (7,
10, 13);
[0027] One embodiment may allow users create soft-
ware payload processing requests which may comprise
hardware requirements (CPU, Memory, Storage), soft-
ware requirements (software payload), cryptographic
keys and hashes, other metadata. Other metadata may
comprise duration, price, location, hypervisor specific
technologies. This information is stored on a distributed
ledger to be processed by the blockchain solution.
[0028] One embodiment may allow payload proces-
sors to create processing offers which may comprise
available hardware, cryptographic keys and hashes, oth-
er metadata. Other metadata may comprise duration,
price, location, hypervisor specific technologies. This in-
formation is stored on a distributed ledger to be proc-
essed by the blockchain solution.
[0029] One embodiment may allow users and payload
processors to match payload processing requests and
offers and create a binding distributed ledger contract
that instructs the payload processor to provide the serv-

3 4 



EP 3 793 130 A1

4

5

10

15

20

25

30

35

40

45

50

55

ices as described in the payload processing request. Be-
fore, after or during the payload processing one or more
cryptocurrency transactions occur according to prede-
fined rules.
[0030] One or more embodiments may be using net-
work anonymizing technology like tor/I2P or similar, to
communicate with the blockchain solution, the hypervisor
software or the software payloads. Acting this way, the
system maintains the user’s privacy.
[0031] One embodiment may allow additional software
payloads to be ran by the payload processor, without
matching a specific software payload processing re-
quest. These payloads may have roles necessary to
maintain the performance, availability and legal status of
the whole decentralized cloud system.

HARDWARE DESCRIPTION

[0032] Fig. 2 and Fig. 3 illustrate another embodiment,
a hardware appliance (1) part of the invention comprising
a processing unit (2), and one or more memory chips (3).
This embodiment may additionally comprise internal
storage Fig. 2 (4) and external storage Fig. 3 (4), a net-
work interface Fig. 2 (5), an external wireless network
interface Fig. 3 (5), an alphanumerical input device (6),
a pointer input device (7), a monitor (8) and any associ-
ated electronic parts for the components to function to-
gether.

SOFTWARE PAYLOAD CONFIDENTIALITY

[0033] The software payload is encrypted before being
transferred to the payload processor. The payload proc-
essor needs to be able to decrypt and run the software
payload on demand. The user can decrypt the data re-
motely using OCRA (OAUTH Challenge-Response Al-
gorithms) or similar authentication mechanisms.
[0034] Fig. 4 illustrates a flow diagram of a procedure
100 which uses the distributed ledger as intermediary for
the OCRA Multi Challenge-Response using dual key.
This ensures additional level of audit trails and may be
used as part of one or more embodiments. This process
is performed by the requesting user using a software pro-
gram part of the blockchains solution.
[0035] Fig. 5 illustrates a flow diagram of a procedure
200 which may use the distributed ledger as intermediary
for the OCRA Multi Challenge-Response using dual key.
This ensures additional level of audit trails and may be
used as part of one or more embodiments. This process
is performed by the payload processor.
[0036] In a block 102 a user generates a data encryp-
tion key (DEK) using a cryptographic algorithm such as
AES 128/ AES 256 or similar. In a block 103 the user
encrypts its software payload using the generated DEK.
[0037] In a block 104 a user uploads the encrypted
payload to cloud storage. The cloud storage can be a
regular cloud storage or a decentralized cloud storage
such as ipfs or similar. In this block the software payload

integrity procedure 300 is being performed.
[0038] In a block 105 a user generates a cryptographic
key pair used for Open Authentication (OATH) Chal-
lenge-Response Algorithm (OCRA). Besides OCRA, the
key pair is also used to exchange cryptographic messag-
es using the blockchain solution.
[0039] In a block 106 a user stores on a blockchain
solution an operational request such as "start" or "stop"
which instructs the payload processor to perform such
commands on the software payload. Also, in the same
block a user stores the public key of the key pair gener-
ated at block 105 using the blockchain solution, as well
as other associated metadata.
[0040] In a block 107 a user reads into the blockchain
solution in attempt to find a reply from the payload proc-
essor. The reply contains the payload processor public
key.
[0041] In a decision block 108 is determined if such
reply exists. If not, the blockchain solution is checked
once more in a do-while style loop. If a matching reply
exists, then in a block 109 a user computes an OCRA
client challenge, encrypts it using the payload processor
public key and stores it using the blockchain.
[0042] In a block 110 a user reads into the blockchain
solution in attempt to find a reply from the payload proc-
essor. The reply contains an OCRA server response and
an OCRA server challenge. The private key generated
at block 105 will be used to decrypt the data in the reply.
[0043] In a decision block 111 is determined if such
reply exists. If not, the blockchains solution is checked
once more in a do-while style loop. If a matching reply
exists, then in a decision block 112 is determined if the
OCRA server response is valid.
[0044] In a block 112 a user checks if the OCRA server
response is cryptographically valid. If is invalid, the proc-
ess ends. If the server response is valid, in a block 113
a user is computing the client response.
[0045] In a block 114 a user is encrypting the DEK us-
ing the client response as Key Encryption Key (KEK). In
a block 115 a user is encrypting a reply using the payload
processor public key and stores it using the blockchain
solution. The reply contains the KEK and the client re-
sponse.
[0046] In a block 116 a user reads into the blockchain
solution in attempt to find a reply from the payload proc-
essor. The reply contains the result of the requested op-
eration which can be a confirmation, a rejection or an
error. The user decrypts the reply data using the private
key generated at block 105.
[0047] In a decision block 117 is determined if such
reply exists. If not, the blockchains solution is checked
once more in a do-while style loop. If the reply containing
the operational request result exists, then the process is
ended.
[0048] In a block 202 a payload processor checks the
blockchain solution for an operation request such as
"start" or "stop", a related public key, and the associated
metadata.

5 6 



EP 3 793 130 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0049] In a decision block 203 is determined if such
request exists. If not, the blockchain solution is checked
once more in a do-while style loop. If a matching request
exists, in a block 204 a payload processor downloads
the encrypted software payload and checks the encrypt-
ed software payload integrity using procedure 400.
[0050] In a block 205 a payload processor generates
a cryptographic key pair used for Open Authentication
(OATH) Challenge-Response Algorithm (OCRA). Be-
sides OCRA, the key pair is also used to exchange cryp-
tographic messages using the blockchain solution.
[0051] In a block 206 a payload processor creates a
reply comprising the public key generated at block 205
and stores it using the blockchain solution.
[0052] In a block 207 a payload processor reads into
the blockchain solution in attempt to find a reply from the
user. The reply contains an encrypted OCRA client chal-
lenge. The data from the reply is decrypted using the
private key generated at block 205.
[0053] In a decision block 208 is determined if such
reply exists. If not, the blockchain solution is checked
once more in a do-while style loop. If a matching reply
exists, then in a block 209 a payload processor computes
an OCRA server response and an OCRA server chal-
lenge.
[0054] Afterwards in block 209, a payload processor
encrypts the OCRA server response and the OCRA serv-
er challenge using the user’s public key and stores the
result using the blockchain solution.
[0055] In a block 210 a payload processor reads into
the blockchain solution in attempt to find a reply from the
user. The replay contains and encrypted client response
and a encrypted DEK. The data from the reply is decrypt-
ed using the private key generated at block 205.
[0056] In decision block 211 is determined if such reply
exists. If not, the blockchain solution is checked once
more in a do-while style loop. If a matching reply exists,
then in a decision block 212 is determined if the OCRA
client response is valid.
[0057] In a decision block 212 a payload processor de-
termines if the OCRA client response is valid. If is invalid,
in a block 219 a payload processor computes a rejection
message, encrypts it using the user’s public key and
stores it using the blockchain solution.
[0058] In a decision block 212 a payload processor de-
termines if the OCRA client response is valid. If is valid,
in a block 213 a payload processor decrypts the DEK
and stores it in a cryptographic vault using in a protected
space that cannot be accessed in any way by the payload
processor outside the hypervisor software process.
[0059] In a block 214, a payload processor, using the
hypervisor software, decrypts the software payload. In a
block 215 a payload processor performs the requested
operation on the decrypted software payload.
[0060] In a decision block 216 a payload processor de-
termines the result of the requested operation. If the result
is successful, in a block 217 a payload processor com-
putes a reply containing a confirmation message using

the user’s public key, then stores it using the blockchain
solution.
[0061] In a decision block 216 a payload processor de-
termines the result of the requested operation. If the result
is unsuccessful, in a block 218 a payload processor com-
putes a reply containing a error message using the user’s
public key, then stores it using the blockchain solution.
[0062] One or more embodiments may use various
cryptographic methods to encrypt the software payload
before, during or after it is being uploaded to be proc-
essed by the payload processor. The system may store
related data on the distributed ledger to establish identity,
maintain trust and preserve confidentiality while commu-
nicating with the payload processor.

SOFTWARE PAYLOAD INTEGRITY

[0063] Because the software payload is being trans-
ferred across the internet between unknown parties, the
payload processor must validate the integrity of the soft-
ware payload before executing it. This may be performed
by the payload processor before decryption and after de-
cryption.
[0064] Fig. 6 and Fig. 7 illustrate a flow diagram of two
process 300 and 400 which may use the distributed ledg-
er for storing file hashes that can be validated at various
levels during payload execution. The user stores within
the distributed ledger transaction several hashes that can
be checked against by the payload processor before or
during the execution of the software payload.
[0065] In a block 302 a user calculates the hash of the
encrypted software payload using a hash function such
as SHA256/SHA512 or similar. In block 303 a user up-
loads the data to the cloud. The cloud storage can be
regular cloud storage or preferably decentralized storage
such as ipfs, sia, storj or similar.
[0066] In a block 304 a user stores the location of the
data, the hash of the data and other related metadata
using a blockchain solution.
[0067] In a block 402 a payload processor reads from
a blockchain solution the encrypted software payload lo-
cation, the encrypted payload hash and the associated
metadata. In a block 403 a payload processor downloads
the software payload from the cloud storage.
[0068] In a block 404 a payload processor calculates
the cryptographic hash of the downloaded software pay-
load. In a decision block 405 a payload processor checks
the calculated data against the hash information read
from the blockchain. If the information does not match,
another download is attempted, and the check is per-
formed once again in a do-while style loop. If the infor-
mation matches, the process ends.
[0069] One or more embodiments may validate the
software payload integrity by using the information on
the distributed ledger, and this allows multiple software
payloads to be part of one another, therefore providing
integrity validations at different levels of payload execu-
tion.

7 8 



EP 3 793 130 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0070] One or more embodiments may use different
cryptographic hashing algorithms to validate file integrity.
The system may store related data, including hashes, on
the distributed ledger to preserve integrity of data while
on transit and while at rest.

SOFTWARE PAYLOAD HIGH AVAILABILITY

[0071] Because the software payload runs on hard-
ware that is provided by the payload processor, the sys-
tem takes into consideration the possibility that the hard-
ware might fail, therefore rendering the software payload
inaccessible by its user.
[0072] The system illustrated by Fig. 1 may use one or
more distributed ledgers to coordinate multiple instances
of the same software payload executed by multiple pay-
load processors.
[0073] The user (17) stores within the distributed ledg-
er transaction preferences and metadata used for the
cluster-style or similar communication.
[0074] Payload processors (2,3,4) read high availabil-
ity related information from the software payload
processing requests and provide the requested services.
Payload processors may use one or more blockchain
solutions to exchange high availability information.
[0075] Software payloads (5,6,7,8,9,10,11,12,13) may
use one or more blockchain solutions (14,15,16) to ex-
change high availability information.
[0076] In one embodiment, the communication and co-
ordination between the payload processors may be man-
aged by the hypervisor software, using one or more
blockchains. In another embodiment, the communication
and coordination between the payload processor may be
managed by the software payload itself, using one or
more blockchains.
[0077] In one or more embodiments the communica-
tion may be encrypted and anonymous and may use one
or more blockchain solutions. The system may store re-
lated data on the distributed ledger to establish network
identity of the participants and their roles in the cluster.

NON-LIMITING EXAMPLES

[0078] The discretion of the present application has
been presented for purposes of illustration and descrip-
tion but is not intended to be exhaustive or limited to the
invention in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the in-
vention. The embodiment was chosen and described to
best explain the principles of the invention and practical
application, and to enable others of ordinary skill in the
art to understand the invention for various embodiments
with various modifications as are suited to the particular
use contemplated.

Claims

1. A computer-implemented method for decentralized
computing comprising:

providing, by one or more blockchain proces-
sors, a distributed ledger that specifies a plurality
of software payload processing offers and a plu-
rality software payload processing requests;
presenting, by one or more blockchain proces-
sors, the plurality of payload processing offers
to a user’s device;
presenting, by one or more blockchain proces-
sors, the plurality of payload processing re-
quests to a payload processor device;
receiving, by one or more blockchain proces-
sors, a processing request from the user device,
wherein the particular processing request com-
prises minimum hardware requirements and a
software payload;
receiving, by one or more blockchain proces-
sors, a processing offer from the payload proc-
essor device, wherein the particular processing
offer comprises available hardware for payload
processing services;
appending, by one or more payload processors,
metadata describing minimum cryptocurrency
cost of each of the payload processing offers,
and
receiving, by one or more payload processors,
payment for payload processing services
through the distributed ledger.

2. The computer-implemented method of claim 1,
wherein the payload processing request from the us-
er device is sent using anonymizing technology to
maintain the privacy of a user and a user’s device.

3. The computer-implemented method of claim 1, fur-
ther comprising:

appending, by one or more payload processors,
metadata describing encryption capabilities for
each of the payload processing offers;
appending, by one or more users, metadata de-
scribing encryption requirements for each of the
payload processing request;
appending, by one or more users, metadata de-
scribing a cryptographic public key to the
processing request, and
appending, by one or more users, metadata de-
scribing a cryptographic hash to the processing
request.

4. The computer-implemented method of claim 1, fur-
ther comprising:
appending, by one or more users, metadata describ-
ing a payload concurrency processing value to the

9 10 



EP 3 793 130 A1

7

5

10

15

20

25

30

35

40

45

50

55

processing request.

5. The computer-implemented method of claim 1,
wherein the distributed ledger is a blockchain.

6. The computer-implemented method of claim 1,
wherein the distributed ledger uses a smart contract.

7. A system for decentralized computing comprising:

a memory;
a processor communicatively coupled to the
memory;
providing, a distributed ledger that specifies a
plurality of software payload processing offers
and a plurality software payload processing re-
quests;
presenting, the plurality of payload processing
offers to a user’s device;
presenting, the plurality of payload processing
requests to a payload processor device;
receiving, a processing request from the user
device, wherein the particular processing re-
quest comprises minimum hardware require-
ments and a software payload;
receiving, a processing offer from the payload
processor device, wherein the particular
processing offer comprises available hardware
for payload processing services;
appending, by one or more payload processors,
metadata describing minimum cryptocurrency
cost of each of the payload processing offers,
and
providing, to one or more payload processors,
payment for payload processing services
through the distributed ledger.

8. The system of claim 7, wherein the payload process-
ing request from the user device is sent using ano-
nymizing technology to maintain the privacy of a user
and a user’s device.

9. The system of claim 7, further comprising:

appending, by one or more payload processors,
metadata describing encryption capabilities for
each of the payload processing offers;
appending, by one or more users, metadata de-
scribing encryption requirements for each of the
payload processing request;
appending, by one or more users, metadata de-
scribing a cryptographic public key to the
processing request, and
appending, by one or more users, metadata de-
scribing a cryptographic hash to the processing
request.

10. The system of claim 7, further comprising:

appending, by one or more users, metadata describ-
ing a payload concurrency processing value to the
processing request.

11. The system of claim 7, wherein the distributed ledger
is a blockchain.

12. The system of claim 7, wherein the distributed ledger
uses a smart contract.

13. A system for decentralized computing comprising:

a memory;
a processor communicatively coupled to the
memory;
providing, a distributed ledger that specifies a
plurality of software payload processing offers
and a plurality software payload processing re-
quests;
providing, a processing offer from the payload
processor device, wherein the particular
processing offer comprises available hardware
for payload processing services, and
receiving, a processing request from the distrib-
uted ledger, wherein the particular processing
request comprises minimum hardware require-
ments and a software payload;
providing, the particular payload processing
service, as per payload processing request,
along ensuring confidentiality, integrity and
availability of the software payload.

14. The system of claim 13, wherein the distributed ledg-
er is a blockchain.

15. The system of claim 14, wherein the distributed ledg-
er uses a smart contract.

16. A computer program product for decentralized com-
puting comprising a computer storage medium hav-
ing computer readable program code embodied
therewith, the computer readable program code con-
figured to perform:

providing, a distributed ledger that specifies a
plurality of software payload processing offers
and a plurality software payload processing re-
quests;
presenting, the plurality of payload processing
offers to a user’s device;
presenting, the plurality of payload processing
requests to a payload processor device;
receiving, a processing request from the user
device, wherein the particular processing re-
quest comprises minimum hardware require-
ments and a software payload;
receiving, a processing offer from the payload
processor device, wherein the particular

11 12 



EP 3 793 130 A1

8

5

10

15

20

25

30

35

40

45

50

55

processing offer comprises available hardware
for payload processing services.

17. A computer program product for decentralized com-
puting comprising a computer storage medium hav-
ing computer readable program code embodied
therewith, the computer readable program code con-
figured to perform:

providing, a distributed ledger that specifies a
plurality of software payload processing offers
and a plurality software payload processing re-
quests;
providing, a processing offer from the payload
processor device, wherein the particular
processing offer comprises available hardware
for payload processing services, and
providing, the particular payload processing
service, as per payload processing request,
along ensuring confidentiality, integrity and
availability of the software payload.

13 14 



EP 3 793 130 A1

9



EP 3 793 130 A1

10



EP 3 793 130 A1

11



EP 3 793 130 A1

12



EP 3 793 130 A1

13



EP 3 793 130 A1

14



EP 3 793 130 A1

15



EP 3 793 130 A1

16

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

